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The axisymmetric problem for an ideally plastic body is considered under the 
conditions of incomplete plasticity according to the Haar -K&m& hypothesis 

(the intermediate of the principal stresses, the annular, is related to the strains 

by Hooke’s law, and the strain and stress tensors are coaxial). The corresponding 
system of equations is quasi-linear and of hyperbolic type. Its characteristics are 
surfaces of maximal shear stress. An iteration process is proposed for the appro- 

ximate solution, and its convergence is proved. 

1. Equilibrium equations for axial symmetry. Let usexamine abody 
of revolution in a cylindrical r, q , z coordinate system. We assume the load to be 
independent of the angle q?. Then, the equilibrium equations are 

The principal stresses are 

Following Cl], we distinguish two possibilities: (1) the circumferential stress 6, is 

extreme (Q~ > (T2 > 5, or a2 > 61 > a,), (2) G, is the intermediate stress (61 > 

% > % or o2 > G;p < al). 
Henceforth,-we shall consider the incomplete state of plasticity for which orp is the 

intermediate stress. For definiteness, let us assume that 

Ol> 6, > 32, 61 - 52 = 1 (1.2) 

everywhere in the domain under consideration. All the stresses here are referred to twice 

the torsion yield point. 
Let u, II denote the displacement vector components along the r, z axes, respect- 

ively, and let us take the Haar-KQrmdn hypothesis [l. 21, according to which the stress 

05, retains the elastic relation with the strains 

(1.3) 

Here v is the Poisson’s ratio, k the modulusofvolume compression referred to twice the 
yield point. Moreover, the condition of coaxiality of the stress and strain tensors 
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T 2r 
rz = rz 

a --e r z 5 -‘3 P f 

and the condition of an elastic change in volume 

(1.4) 

0, + 6, + 0, = 3k (5 + % + 4 0.5) 

should be added to (1. l), (1.3). 
The equilibrium equations (1.1). the plasticity condition (1.2) and the model relation- 

ships (1.3) - (1, 5) generate a complete system of equations todetermine the six functions 

or, $2, a,, ‘t,f, U, 3. Eliminating o9 from the equilibrium equations by using (1.3). as 

well as from the condition of the elastic change in volume (1.5) by using the Levi trans- 
formation 

cos 20 
Q,=Q+~_, 

COS 20 sin 26 
0, = 5 --y 2 rr, = 2 7 d=+ (1.6) 

where 8 is the angle between the first principal direction and the r-axis, we obtain the 
following quasi-linear system of equations 

a5 
sin 20 $+ cos20$= 

cos 28 
-- --- 
ar 2r +&Jr 341 - 29; (1.7) 

The solution of the system (1.7) determines the functions o, 0, n, V, after which or, 
0 ‘t,., are determined from (1.6) and G, from (1.3). It can be shown that the system 
(;: ‘7) is of hyperbolic type with double characteristics whose equations are 

dr -= 
dz ctg 0-G 

i ) 
= zr = %a (u- line) 

dr --ctg e++ dz t i 
= zg = z, O-line) 

G.8) 

The characteristics are therefore surfaces of maximal shear stress (slip surfaces). It is 
seen that the system (1.7) can be separated : the first two equations contain derivatives 
of the functions o, 8 and the second two equations, derivatives of U, V, whence the 
duplicity of the characterisitcs (1.8) follows. The iteration process considered below will 
be constructed according to this separation. 

Let us introduce differential operators along the characteristics 

d 
- :z 
dZ 

-& + ctg (6 - +) -$ (along a-line) 

d 
dz= az L+ctg e+$ $ 

( ) 
(along p-line) 

(1.9) 

and let us perform a number of ma~pulations with the equations of the system (1.7). 
Then we arrive at relationships on the characteristics 
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d[5+e]=-j[q- + (I- ZY) (a - 3kfj dr] 

au-vatI= *5- 
[ 

Y 4 ds, 
I 

dV+Ud6= ~~-~~~d~~ 
[ 

(1.11) 

Here ds,, dsp are length elements along the a and fi lines, U, V are the displace- 
ments along these lines,respectively. Let us note that (1.10) pass into Hencky relation- 
ships, and (1.11) into the Geiringer relationships of the plane problem of ideal plasticity 
theory as r--t oo , k -+ oo (incompressibility of ideally plastic material), It also fol- 
lows from the ~~tio~hips on the characteristics (1.10) that the first two equations of 
the system (1.7) are reducible to Riemann invariants. In fact, using the notation 

we obtain 
t = (t1, tz), t, = Q- 0, t,= o+e (1.12) 

$$ + zh_ (t) 2 = fk (r, t> i- g, Q-7 t> u, k-i,2 (1.13) 

Let us rewrite (1.11) as 

1, .$ + TLz 0) g] = fb 0.1 t) + k?, (f, q 74 L k=3,4 (1.14) 

u = (El, u), 13 = (%, I), 1, I- (z*, 1) 

f’ 0-7 q = -& - 9 @l + ta> %@) 

g, (r, t) -;: 3k ‘IT: “) '61 @I 7 z1 (t) = ctg t2- 11 
( 

n ’ -7-y-j _ 

f2 (r, t) = - -$ - y @I + f2) fz (q 

fl.15) 

I-Iere and henceforth, the summation is only over the Greek subscripts (it is missing 
over the subscript k). 

2. Approximate method of solving the Cauchy problem for the 
system (1.7) and its convergence. For simplicity, let us consider that the 

initial conditions of the Cauchy problem for the system (3.7) are given on a segment of 
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the z = (Laxis, a < r < b, since the general Cauchy problem reduces to the problem 
under consideration by interchanging the independent r, z variables, which does not 
alter the form of the equations in (1.7). 

Let the initial conditions 

(3 (r, 0) = ~dr), 0 (r, 0) = ~o(~> 

u (r, 0) = Q-), v (r, 0) = Vo (") 

be given for the system (1.7) on the segment [a, b] of the z = 0 axis. According to 

the invariants (1.12) introduced and the vector U, this corresponds to the following 

initial conditions for the characteristic system (1,13), (1.14): 

t,(r, 0) = KV% G(r)), U,(r, 0) = (u,(r), vo@9) (2.1) 

Existence and uniqueness theorems of the Cauchy problem for general quasi-linear systems 
of equations with two independent variables in the class C, have been considered in 

[3, 41. We shall also assume here that to(r), U,(t) E C,[a, b]. The smoothness of 

the remaining input data fkr g, follows from their form (1.15) in the case under con- 

sideration for r > 0. We define the following iteration process to construct the solution 
of the problem (1.13), (1.14), (2.1). Let U(O) = (u(O), v(O)) be an arbitrary vector 

function belonging to cl and such that 

u(O) (F, 0) = u,(r) (2.2) 

Substituting ~(0) (r, z) into the right side of the system (1.13), we determine t(O) as a 
solution of the Cauchy problem with the initial conditions 

t(o) (r, 0) = to(r) (2.3) 

after which the solution t(o)(r ,z) found is substituted into (1.14) and the Cauchy prob- 
lem U(1) (r,O) = U,(r) 

is solved for a linear system. Then, the approximation U(1) determined is substituted 

into the left side of (1.13) and @)(r, Z) is determined 

t(l) (r, 0) = to(r) 

and this process is thus repeated many times. Let the approximation U(i) E C, be 

constructed, then for t(i) we have 

atp . a$’ . (i) (i) 
~+@-a7_=fC)+&cU , k=l,2 

t(*) (r, 0) = to (r) (2.5) 

and we determine U(i+U from the solution of the Cauchy problem for the linear system 

(i) &i+l) 

az-- 7 1 
= fP’ + gl, u (0 (i+l) 

, k=3,4 (2.6) 

V+l)(r, 0) = U. (r) (2.7) 

It follows from the existence theorem for the solution of quasi-linear and linear sys- 
terns [3, 41 that a solution t@), u@+l) E C, exists in the domain of definiteness G(i) 
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of the Cauchy problems (2.4) - (2.7) so that all the approximations are defined and 
continuo~ly differentiable in the domains G(i). We note that the domains of definite- 

ness of the Cauchy problems (2.4) - (2.7) coincide since the characte’ristics of the sys- 
tern (2.4) are also characteristics of the system (2.6). Moreover, since the initial prob- 
lem (1.13). (1,14), (2.1) is quasi-linear, the domain of definiteness G of the solution 

of this problem is determined simultaneously with the solution U(r; z), t(r, z) and 
is generally unknown in advance. However, according to Tj] a domain G C: G of the 
variables (r, z) can be indicated in which the solution and its derivatives are known 
to remain bounded. 

The first stage in the proof will consist of proving the existence of some domain G, 
belonging to all the domains G(i) and such that all the approximations and their first 

derivatives are bounded in this domain. To do this let us write down a continued system 
for the quasi-linear system (2.4) and a continued system for the linear system (2.6) (we 
omit this latter because of the total analogy in the computations), Let us recall that the 

continued system of hyperbolic quasi-linear equations is determined by differentiating 
the initial system with respect to the independent variables and result in Riemann inva- 

riants which are determined as follows in this case : 

a@ 
f&LlC&____ 

k ar (a, k = 1, 2) 

11 = V/S, - “/,), 1, = (I, I), n I= (nl, n2) = (G, 6)) 

The continued system for (2.4) then becomes 

Here 

(2.8) 

(2.9) 

In addition to the system (2,8), let us consider the system of ordinary differential equa- 
tions 

dPldz = L,(N) + L,(N)P + Ls(N)p2 

dNldz = F,(N) + F,(N)P 
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in which the following notation has been introduced 

Lo VW = G,(N~;~swII L II. L = CL’, L2) (2.11) 

LI (N) = ~~m<~/ILil~Ij, L,(N) = mm max llL:dI 
Go(N) P=1.2 

J',(N) = max’ (1 F 11, F = (F1, F2), 
WW, Ilull~W 

FI (4 = ~g IIF=’ II 0 
Go(N) = {a < r < b, 0 < 2 < 2,; IIn 11 < N) 

where W = W (2) is determined from the solution of ordinary differential equations 

analogous to (2. lo), constructed for the linear system (2.6). Following [3], we call the 
system (2.10) the majorant system. Let N,, Po denote the quantities 

We give the initial conditions 

P (0) = p,, N (0) = No (2.12) 

for the system (2.10). It follows from a comparison between (2.8) and (2.10) that if 

then 
Ila(QII < N (z), 1) I@) II < P (4, II u II < I%’ (2) (2.13) 

u 

Since compliance with (2.13) for z = 0 follows from (2.12), then for any z > () 

II I#) II 6 iv (4, II H@) II 6 p @I 
Thus, the functions N (z), P (z) majorize the growth of the approximation di) (r, 2) 
anditsfirstderjvatives. For 0 < z < z0 let the solution N (z), P (z) of the major- 
ant system satisfying (2.12) remain bounded. Then for 0 < z < z0 the approximation 

&) (r, Z) and its derivatives are known to remain bounded. 
Now, we assume that all the approximations rick) (r, z), k = 1, 2, . . . i satisfy the 

inequalities 
IIn(k) II < N (4, II Hck) ll < P (z), 11 uck)jl Q w (z> (2.14) 

and we show that (2.14) holds even for the (i + I)- th approximation. For this we write 

the system (2.8) for the (i -/- I)- th approximation- 

a&W 
k 

aZ 

+ $+I) a@+l) 

ar 
= Lk + L kHCi+l, 

a a 
+ L;k&tl)@+l) (2.15) 

any) 

az 
= Fk + F,“H1;“+1’ 

Let us hence note that the right sides of this system differ from the right sides of (2.8) 
by rz@+l), having been substituted in place of u(i) . But since the coefficients of the ma- 
jorant system (2.10) have been determined for u such that. (I u II 6 W (z), where W(z) 
is obtained from the solution of the majorant system for Eqs. (2.6), i.e. \I u(i+l) II < 

w (z). Consequently this permits the conclusion that the system (2.10) is also a majorant 
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system for (2.15). Hence, there follows 

I/ IL(i+l) I/ < N (z), 1) H(“‘) I( < P (z) (2.16) 

Since the initial approximation can be selected so that (2.14) would be satisfied, then 
it has thereby been proved that all the approximations di+l) satisfy the inequalities 
(2.16). It is shown analogously that all the approximations U(itl) and their derivatives 

are uniformly bounded. The existence of some domain Go belonging to all G(i) in which 
(2.16) is satisfied is thereby proved. Hence, if the relationships (2.11) are considered, 
and computations analogous to those considered in [3] are performed, then we obtain 

that G, E G,. 
The second stage of the proof consists of proving the uniform convergence of the se- 

quence {fci)} in G, But let us first formulate the following lemma (see [3] for the 

proof). 
kt a vector function n (z) = (121, n,) continuous in the segment 0 < z < zd 

satisfy the inequality 

I/ n (4 II < S [A CT) + B CT) oy:_ II *I (8 Ill dr (2.17) 

and let I A (z) 1 < A, 1 B"(z) 1 < B for 0;’ z < z. . Then the estimate 

Iln (z) II <o~~~zlln (~)I1 G f$ P - 1) (2.18) 
holds for 0 < z < zo. 

It can be shown that the operator corresponding to (1.14) and transforming the appro- 

ximation t(i) into Uci+iJ is “compressing”. To do this, we write (1.14) for the UCi)- 

approximation 

I 

= $-” + gjj-lfUfi), k z 3, /I (2.19) 

and we introduce the expression 

$+l) = lp) (u(i+U _ u(i)) u = (U,, Uz) = (U, P), II, = (l;, 1;) (2.20) 

Making use of the theorem on finite increments, we have for the difference, for example: 

l +I_ 1 c+i-l) = 
? a (l,%,) 

kk kk s % 

@i-l) .L h (t(i) _ t(W)) dh (tf) _ $-1)) 
(2.21) 

0 

Afterwards, we subtract (2.19) from (2.6) and we take into account the possibility of 
solving (2.20) for UkCitl) - CTki) and relations of the form (2.21) for lkci) - I~(‘-~); 
fh.‘i’ _ jh.(i-1); ,& _ &I). We thence obtain a linear system for pk”-” 

k, a = 3, 4; p = 1, 2 (2.22) 

Here xkcc, A1,’ are determined in terms of the functions fh.r gkY lk, tkr UI, and their de- 
rivatives. Integrating (2.22) along the characteristics dr : dz = Tk’*’ lying in G,, we 
have , $+I) 1 < i 1 A,” ($’ - $--l’) + Xka,,ctl) 1 dt 

0 

(2.23) 
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holds everywhere in G, by virtue of (2.13). We use the notation 

Ri+i (Z) = max 
7, rcEGo. T<Z 

11 pci+l) (1 

Then it follows from (2.22) (2.23) that 

Ili+i (z) < B i [II tci) - t(‘-‘) I/ i_ Hi+1 (z, ] dz 
0 

and we obtain by virtue of the lemma presented 

Ri+l (z) < (eBr - 1) 11 t@) - t+l) 11 (2.24) 

Therefore, for small 0 < z < z. the operator corresponding to the system (1.14) is “com- 

pressive”. Using the estimate (2.24) we can show the uniform convergence of the se- 

quence of approximations {t(‘)}. In fact, let us write the system (1.13) for the (i -I)-th 

approximation 
+ $1) ,Z-l) _ 

&f-l, 
az r$-1' + &1$&i-l), k _ * 2 

- > (2.25) 

Now if (2.25) is subtracted from (2.4) correspondingly, and relationships analogous to 
(2.21)obtained by using the theorem on finite increments,are used here, then to deter- 
mine 6,O) = tk(i) - tk(i-i) we obtain the linear system 

k, p=l, 2; u=i, 2 (2.26) 

Here, exactly as in (2.22) the nkp, M,” are determined in terms of the functions fk, 
&?b, I,, 6, U and their derivatives. Integrating (2.26) along the characteristics lying 

in Go, we obtain for each point of Go 

where the inequalities 

,,nti@,,<AP II&“II\<A, A = const 

hold for flI,p, iMka by virtue of (2.13). Then if we introduce 

Di (z) = 7, my_ II P II 
and use the inequality (2.24) written for R~(z), we obtain 

Di (2) < A 5 iDi- (7) + Di (r)I dry Di (z) < c [ Di-1 (z) dr 

or 
0 0 

Di (z) < const 6 (2.27) 

which proves the uniform convergence of the sequence of approximations {t(i)} in Go 

let us note that the uniform convergence of the sequence {U(i)} in Go follows from 
(2.24) and from (2.27). 

Finally, using the continuous dependence of the solution of the Cauchy problem on the 
initial data, we obtain the uniform convergence of the sequence {H(i)} and consequent- 
ly 0f {dtwa~ j, {dtwh j , fi om an analysis of the continued system (2.8). 

According to a known theorem of analysis, this means that the functions t = lim t@), 
U = lim W, i --f oo are continuously differentiable in Go. Passing to the limit in 
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(2.4), (2.6). we conclude that t, U is a solution of the problem (1.13). (1.14) (2.1). 
Let us note the following: 

1) The proof of the convergence of the proposed method of solving the Cauchy 
problem is carried over to the case of the characteristic problem as well as the mixed 
problem for the system (1.7) without essential change since it has been carried out by 
the method of characteristics. 

2) The method considered for the solution of the incomplete plasticity equations 
can be applied to arbitrary hyperbolic quasi-linear systems with two independent varia- 

bles admitting of separation in the above-mentioned sense. 

3) The approximate method presented for solving the incomplete plasticity equa- 
tions corresponding to the faces of the Tresca prism for the axisymmetric case reduces 

essentially to solving a number of plane problems of ideal plasticity theory (plane strain), 

whose numerical solution methods are quite well developed ; the difference from the 
plane problem will consist only in the presence of an inhomogeneity in the equations 

under consideration (see (1.10). (1.11)). 

In conclusion, the author is grateful to E, I. Shemiakin for supervising the research and 
for valuable remarks. 
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The stability of deformation of an elastic viscoplastic hardening material under 
high precritical strains is investigated in a three-dimensional formulation. A so- 
lution of the stability equations is obtained in a rectangular coordinate system 
for a developed fundamental plastic flow process with small elastic strains inthe 

case of a homogeneous precritical state. The surface and internal instability 

phenomena are investigated. 
The papers [l. 21 are devoted to an investigation of the stability of deforma- 

tion of an elastic-plastic material with large precritical strains. The stability 
of deformation of bodies of viscoplastic and elastic-viscoplastic material under 


